HYDROGENATION OF 1,3-BUTADIENE WITH CYCLOHEXADIENES OVER CERIUM OXIDE

Tsutomu YAMAGUCHI and Hiroshi SHIMA
Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

Cerium oxide, which is not active for $\mathrm{H_2^{-D}_2}$ equilibration, catalyzes the hydrogenation of 1,3-butadiene using cyclohexadiene as a hydrogen source and gives trans-2-butene almost exclusively. Marked difference in hydrogenating activity was found on cerium oxide between 1,4- and 1,3-cyclohexadienes, the former being much more active than the latter, while there was no difference over MgO.

Activation of H_2 molecule is the most important process in hydrogenation of unsaturated hydrocarbons. The necessity of the dissociation of H_2 molecules has typically been shown in the hydrogenation of cyclohexene on a Au-Pd/Ag catalyst¹⁾. In fact, many metal and metal oxide catalysts which catalyze the hydrogenation reaction are also active for H_2 -D $_2$ equilibration.

In this article we wish to show an alternative process which includes the application of hydrogen donor molecules to the hydrogenation of 1,3-butadiene $(1,3-BD)^2$ over such a catalyst that catalyzes neither $\mathrm{H_2-D_2}$ equilibration nor the hydrogenation with $\mathrm{H_2}$ molecules.

Cerium oxide was prepared from the hydrolysis of cerium chloride with aqueous ammonia to form an insoluble hydroxide which was then evacuated and treated with hydrogen at 873° K <u>in situ</u> prior to use. Magnesium hydroxide was evacuated <u>in situ</u> at 1273° K to give MgO catalyst. Typical reaction mixtures contained 33.3×10^2 Pa of 1,3-BD and cyclohexadiene (CHD). The reaction was carried out in a closed recirculation reactor at 293° K.

Table 1 and 2 show the comparisons of the four sets of reactions on cerium oxide and MgO using different hydrogen sources. The products were n-butenes, hydrogen, benzene, isomeric CHD, and a trace amount of cyclohexene. No butane and cyclohexane was obtained.

Reaction	Rate	Relative	Product %		
	$(mol \cdot g^{-1} \cdot min^{-1})$	rate	1-B ^{a)}	t-2-B ^a	c-2-B ^{a)}
1,3-BD + 1,4-CHD	1.72×10^{-3}	16 400	8.0	86.5	5.5
1,3-BD + 1,3-CHD	7.29×10^{-5}	694	4.5	94.0	1.5
1,3-BD + H ₂	1.05×10^{-7}	1	trace	95	trace
$H_2 + D_2$	no	_	_		_

Table 1. Reactions over cerium oxide at 293°K

a) 1-B: 1-butene, t-2-B: trans-2-butene, c-2-B: cis-2-butene

From these Tables, we can see some important results. First of all, though the cerium oxide catalyst has very low activity to the hydrogenation by $\rm H_2$ (or $\rm D_2$) molecules and to $\rm H_2-D_2$ equilibration, it shows a high activity for hydrogenation of 1,3-BD when CHD is used as a hydrogen source. Secondly, 1,4-cyclohexadiene (1,4-CHD) is the more effective hydrogen source than 1,3-CHD on the cerium oxide

catalyst, while there is no difference in both the dienes on MgO. A marked difference in the hydrogen donating ability of two CHDs over cerium oxide suggests that the two hydrogen atoms are

Reaction	Rate (mol·g ⁻¹ ·min ⁻¹)	Relative rate		roduct t-2-B ²	% a) _{c-2-B} a)
1,3-BD + 1,4-CHD	7.56 x 10 ⁻⁴	5.3	12.0	11.5	77.0
1,3-BD + 1,3-CHD	7.78×10^{-4}	5.4	12.5	17.5	73.0
1,3-BD + H ₂	1.43×10^{-4}	1	12.5	12.5	76.0
$H_2 + D_2$	no			_	_

Table 2. Reactions over MgO at 293°K

a) See the footnote of Table 1.

abstracted or transferred to the catalyst or to the diolefin molecule simultaneously. Iridium complexes have also been reported to catalyze the disproportionation of 1,4-CHD to benzene and cyclohexene while 1,3-CHD was completely inert 3). This is not the case on MgO; one hydrogen atom is liberated from CHD (probably as a proton) and a common intermediate is formed, which gives one benzene molecule by dropping another hydrogen atom or could be an intermediate of the interconversion between 1,3-and 1,4-CHD. In fact, the isomerization between 1,3-and 1,4-CHD on cerium oxide hardly took place, while it was very rapid on MgO. Thirdly, almost exclusive formation of trans-2-butene was found on the cerium oxide catalyst. The selectivity of olefin isomers did not change by changing the hydrogen sources, unlike the case of 2^{2} , though an intrinsic selectivity was completely different over those two catalysts. The predominance of 2-olefin may suggests that the π -allyl intermediate is important, as Kwiatek has postulated. The exclusive formation of trans isomer on cerium oxide may reflect the gas phase composition of 1,3-BD, anti form being much more favorable than the syn form. On the other hand, syn- π -allyl-system was proposed on MgO which is known as a typical base catalyst.

Proton NMR analysis revealed that the two H atoms are located almost exclusively on the 1 and 4 carbon atoms of trans- $C_4H_2D_6$ which was formed from the reaction of 1,4-CHD and 1,3- C_4D_6 on the cerium oxide catalyst. This clearly shows that trans-2-butene is the primary product and not an isomerized product.

REFERECES

- 1) B. J. Wood and H. Wise, J. Catal., 5, 135 (1966).
- 2) T. Yamaguchi and J. W. Hightower, J. Amer. Chem. Soc., 99, 4201 (1977).
- 3) J. E. Lyons, J. C. S. Chem. Comm., 1969, 1156.
- 4) J. Kwiatek, I. L. Mador, and J. Seyler, Adv. Chem. Ser., <u>37</u>, 201 (1963).
- 5) H. Hattori, Y. Tanaka, and K. Tanabe, J. Amer. Chem. Soc., <u>98</u>, 4652 (1976).

(Received June 6, 1979)